Friday, January 25, 2013

Less than Jaw-Dropping: Half of Sites Are Below Average

Last week, the Tufts Center for the Study of Drug Development unleashed the latest in their occasional series of dire pronouncements about the state of pharmaceutical clinical trials.

One particular factoid from the CSDD "study" caught my attention:
Shocking performance stat:
57% of these racers won't medal!
* 11% of sites in a given trial typically fail to enroll a single patient, 37% under-enroll, 39% meet their enrollment targets, and 13% exceed their targets.
Many industry reporters uncritically recycled those numbers. Pharmalot noted:
Now, the bad news – 48 percent of the trial sites miss enrollment targets and study timelines often slip, causing extensions that are nearly double the original duration in order to meeting enrollment levels for all therapeutic areas.
(Fierce Biotech and Pharma Times also picked up the same themes and quotes from the Tufts PR.)

There are two serious problems with the data as reported.

One: no one – neither CSDD nor the journalists who loyally recycle its press releases – seem to remember this CSDD release from less than two years ago. It made the even-direr claim that
According to Tufts CSDD, two-thirds of investigative sites fail to meet the patient enrollment requirements for a given clinical trial.
If you believe both Tufts numbers, then it would appear that the number of under-performing sites has dropped almost 20% in just 20 months – from 67% in April 2011 to 48% in January 2013. For an industry as hidebound and slow-moving as drug development, this ought to be hailed as a startling and amazing improvement!

Maybe at the end of the day, 48% isn't a great number, but surely this would appear to indicate we're on the right track, right? Why would no one mention this?

Which leads me to problem two: I suspect that no one is connecting the 2 data points because no one is sure what it is we're even supposed to be measuring here.

In a clinical trial, a site's "enrollment target" is not an objectively-defined number. Different sponsors will have different ways of setting targets – in fact, the method for setting targets may vary from team to team within a single pharma company.

The simplest way to set a target is to divide the total number of expected patients by the number of sites. If you have 50 sites and want to enroll 500 patients, then viola ... everyone's got a "target" of 10 patients! But then as soon as some sites start exceeding their target, others will, by definition, fall short. That’s not necessarily a sign of underperformance – in fact, if a trial finishes enrollment dramatically ahead of schedule, there will almost certainly be a large number of "under target" sites.

Some sponsors and CROs get tricky about setting individual targets for each site. How do they set those? The short answer is: pretty arbitrarily. Targets are only partially based upon data from previous, similar (but not identical) trials, but are also shifted up or down by the (real or perceived) commercial urgency of the trial. They can also be influenced by a variety of subjective beliefs about the study protocol and an individual study manager's guesses about how the sites will perform.

If a trial ends with 0% of sites meeting their targets, the next trial in that indication will have a lower, more achievable target. The same will happen in the other direction: too-easy targets will be ratcheted up. The benchmark will jump around quite a bit over time.

As a result, "Percentage of trial sites meeting enrollment target" is, to put it bluntly, completely worthless as an aggregate performance metric. Not only will it change greatly based upon which set  of sponsors and studies you happen to look at, but even data from the same sponsors will wobble heavily over time.

Why does this matter?

There is a consensus that clinical development is much too slow -- we need to be striving to shorten clinical trial timelines and get drugs to market sooner. If we are going to make any headway in this effort, we need to accurately assess the forces that help or hinder the pace of development, and we absolutely must rigorously benchmark and test our work. The adoption of, and attention paid to unhelpful metrics will only confuse and delay our effort to improve the quality of speed of drug development.

[Photo of "underperforming" swimmers courtesy Boston Public Library on flikr.]

Tuesday, January 15, 2013

Holding Your Breath Also Might Work

Here's a fitting postscript to yesterday's article about wishful-thinking-based enrollment strategies: we received a note from a research site this morning. The site had opted out of my company's comprehensive recruitment campaign, telling the sponsor they preferred to recruit patients their own way.

Here's the latest update from the coordinator:
I've found one person and have called a couple of times, but no return calls.  I will be sending this potential patient a letter this week.  I'm keeping my fingers crossed in finding someone soon!
They don't want to participate in a broad internet/broadcast/advocacy group program, but it's OK -- they have their fingers crossed!

Monday, January 14, 2013

Magical Thinking in Clinical Trial Enrollment

The many flavors of wish-based patient recruitment.

[Hopefully-obvious disclosure: I work in the field of clinical trial enrollment.]

When I'm discussing and recommending patient recruitment strategies with prospective clients, there is only one serious competitor I'm working against. I do not tailor my presentations in reaction to what other Patient Recruitment Organizations are saying, because they're not usually the thing that causes me the most problems. In almost all cases, when we lose out on a new study opportunity, we have lost to one opponent:

Need patients? Just add water!
Magical thinking.

Magical thinking comes in many forms, but in clinical trial enrollment it traditionally has two dominant flavors:

  • We won’t have any problems with enrollment because we have made it a priority within our organization.
    (This translates to: "we want it to happen, therefore it has to happen, therefore it will happen", but it doesn't sound quite as convincing that way, does it?)
  • We have selected sites that already have access to a large number of the patients we need.
    (I hear this pretty much 100% of the time. Even from people who understand that every trial is different and that past site performance is simply not a great predictor of future performance.)

A new form of magical thinking burst onto the scene a few years ago: the belief that the Internet will enable us to target and engage exactly the right patients. Specifically, some teams (aided by the, shall we say, less-than-completely-totally-true claims of "expert" vendors) began to believe that the web’s great capacity to narrowly target specific people – through Google search advertising, online patient communities, and general social media activities – would prove more than enough to deliver large numbers of trial participants. And deliver them fast and cheap to boot. Sadly evidence has already started to emerge about the Internet’s failure to be a panacea for slow enrollment. As I and others have pointed out, online recruitment can certainly be cost effective, but cannot be relied on to generate a sizable response. As a sole source, it tends to underdeliver even for small trials.

I think we are now seeing the emergence of the newest flavor of magical thinking: Big Data. Take this quote from recent coverage of the JP Morgan Healthcare Conference:
For instance, Phase II, that ever-vexing rubber-road matchmaker for promising compounds that just might be worthless. Identifying the right patients for the right drug can make or break a Phase II trial, [John] Reynders said, and Big Data can come in handy as investigators distill mountains of imaging results, disease progression readings and genotypic traits to find their target participants. 
The prospect of widespread genetic mapping coupled with the power of Big Data could fundamentally change how biotech does R&D, [Alexis] Borisy said. "Imagine having 1 million cancer patients profiled with data sets available and accessible," he said. "Think how that very large data set might work--imagine its impact on what development looks like. You just look at the database and immediately enroll a trial of ideal patients."
Did you follow the logic of that last sentence? You immediately enroll ideal patients ... and all you had to do was look at a database! Problem solved!

Before you go rushing off to get your company some Big Data, please consider the fact that the overwhelming majority of Phase 2 trials do not have a neat, predefined set of genotypic traits they’re looking to enroll. In fact, narrowly-tailored phase 2 trials (such as recent registration trials of Xalkori and Zelboraf) actually enroll very quickly already, without the need for big databases. The reality for most drugs is exactly the opposite: they enter phase 2 actively looking for signals that will help identify subgroups that benefit from the treatment.

Also, it’s worth pointing out that having a million data points in a database does not mean that you have a million qualified, interested, and nearby patients just waiting to be enrolled in your trial. As recent work in medical record queries bears out, the yield from these databases promises to be low, and there are enormous logistic, regulatory, and personal challenges in identifying, engaging, and consenting the actual human beings represented by the data.

More, even fresher flavors of magical thinking are sure to emerge over time. Our urge to hope that our problems will just be washed away in a wave of cool new technology is just too powerful to resist.

However, when the trial is important, and the costs of delay are high, clinical teams need to set the wishful thinking aside and ask for a thoughtful plan based on hard evidence. Fortunately, that requires no magic bean purchase.

Magic Beans picture courtesy of Flikr user sleepyneko