Friday, January 25, 2013

Less than Jaw-Dropping: Half of Sites Are Below Average


Last week, the Tufts Center for the Study of Drug Development unleashed the latest in their occasional series of dire pronouncements about the state of pharmaceutical clinical trials.

One particular factoid from the CSDD "study" caught my attention:
Shocking performance stat:
57% of these racers won't medal!
* 11% of sites in a given trial typically fail to enroll a single patient, 37% under-enroll, 39% meet their enrollment targets, and 13% exceed their targets.
Many industry reporters uncritically recycled those numbers. Pharmalot noted:
Now, the bad news – 48 percent of the trial sites miss enrollment targets and study timelines often slip, causing extensions that are nearly double the original duration in order to meeting enrollment levels for all therapeutic areas.
(Fierce Biotech and Pharma Times also picked up the same themes and quotes from the Tufts PR.)

There are two serious problems with the data as reported.

One: no one – neither CSDD nor the journalists who loyally recycle its press releases – seem to remember this CSDD release from less than two years ago. It made the even-direr claim that
According to Tufts CSDD, two-thirds of investigative sites fail to meet the patient enrollment requirements for a given clinical trial.
If you believe both Tufts numbers, then it would appear that the number of under-performing sites has dropped almost 20% in just 20 months – from 67% in April 2011 to 48% in January 2013. For an industry as hidebound and slow-moving as drug development, this ought to be hailed as a startling and amazing improvement!

Maybe at the end of the day, 48% isn't a great number, but surely this would appear to indicate we're on the right track, right? Why would no one mention this?

Which leads me to problem two: I suspect that no one is connecting the 2 data points because no one is sure what it is we're even supposed to be measuring here.

In a clinical trial, a site's "enrollment target" is not an objectively-defined number. Different sponsors will have different ways of setting targets – in fact, the method for setting targets may vary from team to team within a single pharma company.

The simplest way to set a target is to divide the total number of expected patients by the number of sites. If you have 50 sites and want to enroll 500 patients, then viola ... everyone's got a "target" of 10 patients! But then as soon as some sites start exceeding their target, others will, by definition, fall short. That’s not necessarily a sign of underperformance – in fact, if a trial finishes enrollment dramatically ahead of schedule, there will almost certainly be a large number of "under target" sites.

Some sponsors and CROs get tricky about setting individual targets for each site. How do they set those? The short answer is: pretty arbitrarily. Targets are only partially based upon data from previous, similar (but not identical) trials, but are also shifted up or down by the (real or perceived) commercial urgency of the trial. They can also be influenced by a variety of subjective beliefs about the study protocol and an individual study manager's guesses about how the sites will perform.

If a trial ends with 0% of sites meeting their targets, the next trial in that indication will have a lower, more achievable target. The same will happen in the other direction: too-easy targets will be ratcheted up. The benchmark will jump around quite a bit over time.

As a result, "Percentage of trial sites meeting enrollment target" is, to put it bluntly, completely worthless as an aggregate performance metric. Not only will it change greatly based upon which set  of sponsors and studies you happen to look at, but even data from the same sponsors will wobble heavily over time.

Why does this matter?

There is a consensus that clinical development is much too slow -- we need to be striving to shorten clinical trial timelines and get drugs to market sooner. If we are going to make any headway in this effort, we need to accurately assess the forces that help or hinder the pace of development, and we absolutely must rigorously benchmark and test our work. The adoption of, and attention paid to unhelpful metrics will only confuse and delay our effort to improve the quality of speed of drug development.

[Photo of "underperforming" swimmers courtesy Boston Public Library on flikr.]

Tuesday, January 15, 2013

Holding Your Breath Also Might Work

Here's a fitting postscript to yesterday's article about wishful-thinking-based enrollment strategies: we received a note from a research site this morning. The site had opted out of my company's comprehensive recruitment campaign, telling the sponsor they preferred to recruit patients their own way.

Here's the latest update from the coordinator:
I've found one person and have called a couple of times, but no return calls.  I will be sending this potential patient a letter this week.  I'm keeping my fingers crossed in finding someone soon!
They don't want to participate in a broad internet/broadcast/advocacy group program, but it's OK -- they have their fingers crossed!

Monday, January 14, 2013

Magical Thinking in Clinical Trial Enrollment


The many flavors of wish-based patient recruitment.

[Hopefully-obvious disclosure: I work in the field of clinical trial enrollment.]

When I'm discussing and recommending patient recruitment strategies with prospective clients, there is only one serious competitor I'm working against. I do not tailor my presentations in reaction to what other Patient Recruitment Organizations are saying, because they're not usually the thing that causes me the most problems. In almost all cases, when we lose out on a new study opportunity, we have lost to one opponent:

Need patients? Just add water!
Magical thinking.

Magical thinking comes in many forms, but in clinical trial enrollment it traditionally has two dominant flavors:

  • We won’t have any problems with enrollment because we have made it a priority within our organization.
    (This translates to: "we want it to happen, therefore it has to happen, therefore it will happen", but it doesn't sound quite as convincing that way, does it?)
  • We have selected sites that already have access to a large number of the patients we need.
    (I hear this pretty much 100% of the time. Even from people who understand that every trial is different and that past site performance is simply not a great predictor of future performance.)

A new form of magical thinking burst onto the scene a few years ago: the belief that the Internet will enable us to target and engage exactly the right patients. Specifically, some teams (aided by the, shall we say, less-than-completely-totally-true claims of "expert" vendors) began to believe that the web’s great capacity to narrowly target specific people – through Google search advertising, online patient communities, and general social media activities – would prove more than enough to deliver large numbers of trial participants. And deliver them fast and cheap to boot. Sadly evidence has already started to emerge about the Internet’s failure to be a panacea for slow enrollment. As I and others have pointed out, online recruitment can certainly be cost effective, but cannot be relied on to generate a sizable response. As a sole source, it tends to underdeliver even for small trials.

I think we are now seeing the emergence of the newest flavor of magical thinking: Big Data. Take this quote from recent coverage of the JP Morgan Healthcare Conference:
For instance, Phase II, that ever-vexing rubber-road matchmaker for promising compounds that just might be worthless. Identifying the right patients for the right drug can make or break a Phase II trial, [John] Reynders said, and Big Data can come in handy as investigators distill mountains of imaging results, disease progression readings and genotypic traits to find their target participants. 
The prospect of widespread genetic mapping coupled with the power of Big Data could fundamentally change how biotech does R&D, [Alexis] Borisy said. "Imagine having 1 million cancer patients profiled with data sets available and accessible," he said. "Think how that very large data set might work--imagine its impact on what development looks like. You just look at the database and immediately enroll a trial of ideal patients."
Did you follow the logic of that last sentence? You immediately enroll ideal patients ... and all you had to do was look at a database! Problem solved!

Before you go rushing off to get your company some Big Data, please consider the fact that the overwhelming majority of Phase 2 trials do not have a neat, predefined set of genotypic traits they’re looking to enroll. In fact, narrowly-tailored phase 2 trials (such as recent registration trials of Xalkori and Zelboraf) actually enroll very quickly already, without the need for big databases. The reality for most drugs is exactly the opposite: they enter phase 2 actively looking for signals that will help identify subgroups that benefit from the treatment.

Also, it’s worth pointing out that having a million data points in a database does not mean that you have a million qualified, interested, and nearby patients just waiting to be enrolled in your trial. As recent work in medical record queries bears out, the yield from these databases promises to be low, and there are enormous logistic, regulatory, and personal challenges in identifying, engaging, and consenting the actual human beings represented by the data.

More, even fresher flavors of magical thinking are sure to emerge over time. Our urge to hope that our problems will just be washed away in a wave of cool new technology is just too powerful to resist.

However, when the trial is important, and the costs of delay are high, clinical teams need to set the wishful thinking aside and ask for a thoughtful plan based on hard evidence. Fortunately, that requires no magic bean purchase.

Magic Beans picture courtesy of Flikr user sleepyneko

Thursday, December 20, 2012

All Your Site Are Belong To Us


'Competitive enrollment' is exactly that.

This is a graph I tend to show frequently to my clients – it shows the relative enrollment rates for two groups of sites in a clinical trial we'd been working on. The blue line is the aggregate rate of the 60-odd sites that attended our enrollment workshop, while the green line tracks enrollment for the 30 sites that did not attend the workshop. As a whole, the attendees were better enrollers that the non-attendees, but the performance of both groups was declining.

Happily, the workshop produced an immediate and dramatic increase in the enrollment rate of the sites who participated in it – they not only rebounded, but they began enrolling at a better rate than ever before. Those sites that chose not to attend the workshop became our control group, and showed no change in their performance.

The other day, I wrote about ENACCT's pilot program to improve enrollment. Five oncology research sites participated in an intensive, highly customized program to identify and address the issues that stood in the way of enrolling more patients.  The sites in general were highly enthused about the program, and felt it had a positive impact on the operations.

There was only one problem: enrollment didn't actually increase.

Here’s the data:

This raises an obvious question: how can we reconcile these disparate outcomes?

On the one hand, an intensive, multi-day, customized program showed no improvement in overall enrollment rates at the sites.

On the other, a one-day workshop with sixty sites (which addressed many of the same issues as the ENACCT pilot: communications, study awareness, site workflow, and patient relationships) resulted in and immediate and clear improvement in enrollment.

There are many possible answers to this question, but after a deeper dive into our own site data, I've become convinced that there is one primary driver at work: for all intents and purposes, site enrollment is a zero-sum game. Our workshop increased the accrual of patients into our study, but most of that increase came as a result of decreased enrollments in other studies at our sites.

Our workshop graph shows increased enrollment ... for one study. The ENACCT data is across all studies at each site. It stands to reason that if sites are already operating at or near their maximum capacity, then the only way to improve enrollment for your trial is to get the sites to care more about your trial than about other trials that they’re also participating in.

And that makes sense: many of the strategies and techniques that my team uses to increase enrollment are measurably effective, but there is no reason to believe that they result in permanent, structural changes to the sites we work with. We don’t redesign their internal processes; we simply work hard to make our sites like us and want to work with us, which results in higher enrollment. But only for our trials.

So the next time you see declining enrollment in one of your trials, your best bet is not that the patients have disappeared, but rather that your sites' attention has wandered elsewhere.


Tuesday, December 11, 2012

What (If Anything) Improves Site Enrollment Performance?

ENACCT has released its final report on the outcomes from the National Cancer Clinical Trials Pilot Breakthrough Collaborative (NCCTBC), a pilot program to systematically identify and implement better enrollment practices at five US clinical trial sites. Buried after the glowing testimonials and optimistic assessments is a grim bottom line: the pilot program didn't work.

Here are the monthly clinical trial accruals at each of the 5 sites. The dashed lines mark when the pilots were implemented:



4 of the 5 sites showed no discernible improvement. The one site that did show increasing enrollment appears to have been improving before any of the interventions kicked in.

This is a painful but important result for anyone involved in clinical research today, because the improvements put in place through the NCCTBC process were the product of an intensive, customized approach. Each site had 3 multi-day learning sessions to map out and test specific improvements to their internal communications and processes (a total of 52 hours of workshops). In addition, each site was provided tracking tools and assigned a coach to assist them with specific accrual issues.

That’s an extremely large investment of time and expertise for each site. If the results had been positive, it would have been difficult to project how NCCTBC could be scaled up to work at the thousands of research sites across the country. Unfortunately, we don’t even have that problem: the needle simple did not move.

While ENACCT plans a second round of pilot sites, I think we need to face a more sobering reality: we cannot squeeze more patients out of sites through training and process improvements. It is widely believed in the clinical research industry that sites are low-efficiency bottlenecks in the enrollment process. If we could just "fix" them, the thinking goes – streamline their workflow, improve their motivation – we could quickly improve the speed at which our trials complete. The data from the NCCTBC paints an entirely different picture, though. It shows us that even when we pour large amounts of time and effort into a tailored program of "evidence and practice-based changes", our enrollment ROI may be nonexistent.

I applaud the ENACCT team for this pilot, and especially for sharing the full monthly enrollment totals at each site. This data should cause clinical development teams everywhere to pause and reassess their beliefs about site enrollment performance and how to improve it.

Friday, November 16, 2012

The Accuracy of Patient Reported Diagnoses


Novelist Phillip Roth recently got embroiled in a small spat with the editors of Wikipedia regarding the background inspiration for one of his books.  After a colleague attempted to correct the entry for The Human Stain on Roth's behalf, he received the following reply from a Wikipedia editor:
I understand your point that the author is the greatest authority on their own work, but we require secondary sources.
Report: 0% of decapitees could
accurately recall their diagnosis
The editor's response, as exasperating as it was to Roth, parallels the prevailing beliefs in clinical research about the value and reliability of Patient Reported Outcomes (PROs). On the one hand, who knows the patient better than the patient? On the other hand, our SOPs require expert physician assessment and diagnosis -- we, too, usually require secondary sources.

While recent FDA guidance has helped to solidify our approaches to incorporating PROs into traditionally-structured clinical trials, there are still a number of open questions about how far we can go with relying exclusively on what patients tell us about their medical conditions.  These questions come to the forefront when we consider the potential of "direct to patient" clinical trials, such as the recently-discontinued REMOTE trial from Pfizer, a pilot study that attempted to assess the feasibility of conducting a clinical trial without the use of local physician investigators.

Among other questions, the REMOTE trial forces us to ask: without physician assessment, how do we know the patients we recruit even have the condition being studied? And if we need more detailed medical data, how easy will it be to obtain from their regular physicians? Unfortunately, that study ended due to lack of enrollment, and Pfizer has not been particularly communicative about any lessons learned.

 Luckily for the rest of us, at least one CRO, Quintiles, is taking steps to methodically address and provide data for some of these questions.  They are moving forward with what appears to be a small series of studies that assess the feasibility and accuracy of information collected in the direct-to-patient arena. Their first step is a small pilot study of 50 patients with self-reported gout, conducted by both Quintiles and Outcomes Health Information Services.  The two companies have jointly published their data in the open-access Journal of Medical Internet Research.

(Before getting into the article's content, let me just emphatically state: kudos to the Quintiles and Outcomes teams for submitting their work to peer review, and to publication in an open access journal. Our industry needs much, much more of this kind of collaboration and commitment to transparency.)

The study itself is fairly straightforward: 50 patients were enrolled (out of 1250 US patients who were already in a Quintiles patient database with self-reported gout) and asked to complete an online questionnaire as well as permit access to their medical records.

The twin goals of the study were to assess the feasibility of collecting the patients' existing medical records and to determine the accuracy of the patients' self-reported diagnosis of gout.

To obtain patients' medical records, the study team used a belt-and-suspenders approach: first, the patients provided an electronic release along with their physicians' contact information. Then, a paper release form was also mailed to the patients, to be used as backup if the electronic release was insufficient.

To me, the results from the attempt at obtaining the medical records is actually the most interesting part of the study, since this is going to be an issue in pretty much every DTP trial that's attempted. Although the numbers are obviously quite small, the results are at least mildly encouraging:

  • 38 Charts Received
    • 28 required electronic release only
    • 10 required paper release
  • 12 Charts Not Received
    • 8 no chart mailed in time
    • 2 physician required paper release, patient did not provide
    • 2 physician refused

If the electronic release had been used on its own, 28 charts (56%) would have been available. Adding the suspenders of a follow-up paper form increased the total to respectable 76%. The authors do not mention how aggressively they pursued obtaining the records from physicians, nor how long they waited before giving up, so it's difficult to determine how many of the 8 charts that went past the deadline could also potentially have been recovered.

Of the 38 charts received, 35 (92%) had direct confirmation of a gout diagnosis and 2 had indirect confirmation (a reference to gout medication).  Only 1 chart had no evidence for or against a diagnosis. So it is fair to conclude that these patients were highly reliable, at least insofar as their report of receiving a prior diagnosis of gout was concerned.

In some ways, though, this represents a pretty optimistic case. Most of these patients had been living with gout for many year, and "gout" is a relatively easy thing to remember.  Patients were not asked questions about the type of gout they had or any other details that might have been checked against their records.

The authors note that they "believe [this] to be the first direct-to-patient research study involving collection of patient-reported outcomes data and clinical information extracted from patient medical records." However, I think it's very worthwhile to bring up comparison with this study, published almost 20 years ago in the Annals of the Rheumatic Diseases.  In that (pre-internet) study, researchers mailed a survey to 472 patients who had visited a rheumatology clinic 6 months previously. They were therefore able to match all of the survey responses with an existing medical record, and compare the patients' self-reported diagnoses in much the same way as the current study.  Studying a more complex set of diseases (arthritis), the 1995 paper paints a more complex picture: patient accuracy varied considerably depending on their disease: from very accurate (100% for those suffering from ankylosing spondylitis, 90% for rheumatoid arthritis) to not very exact at all (about 50% for psoriatic and osteo arthritis).

Interestingly, the Quintiles/Outcomes paper references a larger ongoing study in rheumatoid arthritis as well, which may introduce some of the complexity seen in the 1995 research.

Overall, I think this pilot does exactly what it set out to do: it gives us a sense of how patients and physicians will react to this type of research, and helps us better refine approaches for larger-scale investigations. I look forward to hearing more from this team.


ResearchBlogging.org Cascade, E., Marr, P., Winslow, M., Burgess, A., & Nixon, M. (2012). Conducting Research on the Internet: Medical Record Data Integration with Patient-Reported Outcomes Journal of Medical Internet Research, 14 (5) DOI: 10.2196/jmir.2202



Also cited: I Rasooly, et al., Comparison of clinical and self reported diagnosis for rheumatology outpatients, Annals of the Rheumatic Diseases 1995 DOI:10.1136/ard.54.10.850

Image courtesy Flickr user stevekwandotcom.

Friday, October 12, 2012

The "Scandal" of "Untested" Generics


I am in the process of writing up a review of this rather terrible Forbes piece on the FDA recall of one manufacturer's version of generic 300 mg bupropion XL. However, that's going to take a while, so I thought I'd quickly cover just one of the points brought up there, since it seems to be causing a lot of confusion.

Forbes is shocked, SHOCKED to learn that things
 are happening the same way they always have:
call Congress at once!
The FDA’s review of the recall notes that when the generic was approved, only the 150 mg version was tested for bioequivalence in humans. The 300 mg version was approved based upon the 150 mg data as well as detailed information about the manufacturing and composition of both versions.

A number of people expressed surprise about this – they seemed to genuinely not be aware that a drug approval could happen in this way. The Forbes article stated that this was entirely inappropriate and worthy of Congressional investigation.

In fact, many strengths of generic drugs do not undergo in vivo bioequivalence and bioavailability testing as part of their review and approval. This is true in both the US and Europe. Here is a brief rundown of when and why such testing is waived, and why such waivers are neither new, nor shocking, nor unethical.

Title 21, Part 320 of the US Code of Federal Regulations is the regulatory foundation regarding bioequivalence testing in drugs.  Section 22 deals specifically with conditions where human testing should be waived. It is important to note that these regulations aren't new, and the laws that they're based on aren't new either (in fact, the federal law is 20 years old, and was last updated 10 years ago).

By far the most common waiver is for lower dosage strengths. When a drug exists in many approved dosages, generally the highest dose is subject to human bioequivalence testing and the lower doses are approved based on the high-dose results supplemented by in vitro testing.

However, when higher doses carry risks of toxicity, the situation can be reversed, out of ethical concerns for the welfare of test subjects. So, for example, current FDA guidance for amiodarone – a powerful antiarrhythmic drug with lots of side effects – is that the maximum “safe” dose of 200 mg should be tested in humans, and that 100 mg, 300 mg, and 400 mg dosage formulations will be approved if the manufacturer also establishes “acceptable in-vitro dissolution testing of all strengths, and … proportional similarity of the formulations across all strengths”.

That last part is critically important: the generic manufacturer must submit additional evidence about how the doses work in vitro, as well as keep the proportions of inactive ingredients constant. It is this combination of in vivo bioequivalence, in vitro testing, and manufacturing controls that supports a sound scientific decision to approve the generic at various doses.

In fact, certain drugs are so toxic – most chemotherapies, for example – that performing a bioequivalence test in healthy humans in patently unethical. In many of those cases, generic approval is granted on the basis of formulation chemistry alone. For example, generic paclitaxel is waived from human testing (here is a waiver from 2001 – again demonstrating that there’s nothing terribly shocking or new about this process).

In the case of bupropion, FDA had significant concerns about the risk of seizures at the 300 mg dose level. Similar to the amiodarone example above, they issued guidance providing for a waiver of the higher dosage, but only based upon the combination of in vivo data from the 150 mg dose, in vitro testing, and manufacturing controls.

You may not agree with the current system, and there may be room for improvement, but you cannot claim that it is new, unusual, or requiring congressional inquiry. It’s based on federal law, with significant scientific and ethical underpinnings.

Further reading: FDA Guidance for Industry: Bioavailability and Bioequivalence Studies for Orally Administered Drug Products — General Considerations

Thursday, October 11, 2012

TransCelerate and CDISC: The Relationship Explained


Updating my post from last month about the launch announcement for TransCelerate BioPharma, a nonprofit entity funded by 10 large pharmaceutical companies to “bring new medicines to patients faster”: one of the areas I had some concern about was in the new company's move into the “development of clinical data standards”.

How about we transcelerate
this website a bit?
Some much-needed clarification has come by way of Wayne Kubick, the CTO of CDISC. In an article in Applied Clinical Trials, he lays out the relationship in a bit more detail:
TransCelerate has been working closely with CDISC for several months to see how they can help us move more quickly in the development of therapeutic area data standards.  Specifically, they are working to provide CDISC with knowledgeable staff to help us plan for and develop data standards for more than 55 therapeutic areas over the next five years.
And then again:
But the important thing to realize is that TransCelerate intends to help CDISC achieve its mission to develop therapeutic area data standards more rapidly by giving us greater access to skilled volunteers to contribute to standards development projects.   
So we have clarification on at least one point: TransCelerate will donate some level of additional skilled manpower to CDISC-led initiatives.

That’s a good thing, I assume. Kubick doesn't mention it, but I would venture to guess that “more skilled volunteers” is at or near the top of CDISC's wish list.

But it raises the question: why TransCelerate? Couldn't the 10 member companies have contributed this employee time already? Did we really need a new entity to organize a group of fresh volunteers? And if we did somehow need a coordinating entity to make this happen, why not use an existing group – one with, say, a broader level of support across the industry, such as PhRMA?

The promise of a group like TransCelerate is intriguing. The executional challenges, however, are enormous: I think it will be under constant pressure to move away from meaningful but very difficult work towards supporting more symbolic and easy victories.

Tuesday, October 2, 2012

Decluttering the Dashboard


It’s Gresham’s Law for clinical trial metrics: Bad data drives out good. Here are 4 steps you can take to fix it.

Many years ago, when I was working in the world of technology startups, one “serial entrepreneur” told me about a technique he had used when raising investor capital for his new database firm:  since his company marketed itself as having cutting-edge computing algorithms, he went out and purchased a bunch of small, flashing LED lights and simply glued them onto the company’s servers.  When the venture capital folks came out for due diligence meetings, they were provided a dramatic view into the darkened server room, brilliantly lit up by the servers’ energetic flashing. It was the highlight of the visit, and got everyone’s investment enthusiasm ratcheted up a notch.

The clinical trials dashboard is a candy store: bright, vivid,
attractive ... and devoid of nutritional value.
I was reminded of that story at a recent industry conference, when I naively walked into a seminar on “advanced analytics” only to find I was being treated to an extended product demo. In this case, a representative from one of the large CROs was showing off the dashboard for their clinical trials study management system.

And an impressive system it was, chock full of bubble charts and histograms and sliders.  For a moment, I felt like a kid in a candy store.  So much great stuff ... how to choose?

Then the presenter told a story: on a recent trial, a data manager in Italy, reviewing the analytics dashboard, alerted the study team to the fact that there was an enrollment imbalance in Japan, with one site enrolling all of the patients in that country.  This was presented as a success story for the system: it linked up disparate teams across the globe to improve study quality.

But to me, this was a small horror story: the dashboard had gotten so cluttered that key performance issues were being completely missed by the core operations team. The fact that a distant data manager had caught the issue was a lucky break, certainly, but one that should have set off alarm bells about how important signals were being overwhelmed by the noise of charts and dials and “advanced visualizations”.

Swamped with high-precision trivia
I do not need to single out any one system or vendor here: this is a pervasive problem. In our rush to provide “robust analytic solutions”, our industry has massively overengineered its reporting interfaces. Every dashboard I've had a chance to review – and I've seen a lot of them – contain numerous instances of vividly-colored charts crowding out one another, with minimal sense of differentiating the significant from the tangential.

It’s Gresham’s Law for clinical trial metrics: Bad data drives out good. Bad data – samples sliced so thin they’ve lost significance, histograms of marginal utility made “interesting” (and nearly unreadable) by 3-D rendering, performance grades that have never been properly validated. Bad data is plentiful and much, much easier to obtain than good data.

So what can we do? Here are 4 initial steps to decluttering the dashboard:

1. Abandon “Actionable Analytics”
Everybody today sells their analytics as “actionable” [including, to be fair, even one company’s website that the author himself may be guilty of drafting]. The problem though is that any piece of data – no matter how tenuous and insubstantial -- can be made actionable. We can always think of some situation where an action might be influenced by it, so we decide to keep it. As a result, we end up swamped with high-precision trivia (Dr. Smith is enrolling at the 82nd percentile among UK sites!) that do not influence important decisions but compete for our attention. We need to stop reporting data simply because it’s there and we can report it.

2. Identify Key Decisions First
 The above process (which seems pretty standard nowadays) is backwards. We look at the data we have, and ask ourselves whether it’s useful. Instead, we need to follow a more disciplined process of first asking ourselves what decisions we need to make, and when we need to make them. For example:

  • When is the earliest we will consider deactivating a site due to non-enrollment?
  • On what schedule, and for which reasons, will senior management contact individual sites?
  • At what threshold will imbalances in safety data trigger more thorough investigation?

Every trial will have different answers to these questions. Therefore, the data collected and displayed will also need to be different. It is important to invest time and effort to identify critical benchmarks and decision points, specific to the needs of the study at hand, before building out the dashboard.

3. Recognize and Respect Context
As some of the questions about make clear, many important decisions are time-dependent.  Often, determining when you need to know something is every bit as important as determining what you want to know. Too many dashboards keep data permanently anchored over the course of the entire trial even though it's only useful during a certain window. For example, a chart showing site activation progress compared to benchmarks should no longer be competing for attention on the front of a dashboard after all sites are up and running – it will still be important information for the next trial, but for managing this trial now, it should no longer be something the entire team reviews regularly.

In addition to changing over time, dashboards should be thoughtfully tailored to major audiences.  If the protocol manager, medical monitor, CRAs, data managers, and senior executives are all looking at the same dashboard, then it’s a dead certainty that many users are viewing information that is not critical to their job function. While it isn't always necessary to develop a unique topline view for every user, it is worthwhile to identify the 3 or 4 major user types, and provide them with their own dashboards (so the person responsible for tracking enrollment in Japan is in a position to immediately see an imbalance).

4. Give your Data Depth
Many people – myself included – are reluctant to part with any data. We want more information about study performance, not less. While this isn't a bad thing to want, it does contribute to the tendency to cram as much as possible into the dashboard.

The solution is not to get rid of useful data, but to bury it. Many reporting systems have the ability to drill down into multiple layers of information: this capability should be thoughtfully (but aggressively!) used to deprioritize all of your useful-but-not-critical data, moving it off the dashboard and into secondary pages.

Bottom Line
The good news is that access to operational data is becoming easier to aggregate and monitor every day. The bad news is that our current systems are not designed to handle the flood of new information, and instead have become choked with visually-appealing-but-insubstantial chart candy. If we want to have any hope of getting a decent return on our investment from these systems, we need to take a couple steps back and determine: what's our operational strategy, and who needs what data, when, in order to successfully execute against it?


[Photo credit: candy store from flikr user msgolightly.]

Tuesday, September 25, 2012

What We Can Anticipate from TransCelerate


TransCelerate: Pharma's great kumbaya moment?
Last week, 10 of the largest pharmaceutical companies caused quite a hullaballoo in the research world with their announcement that they were anteing up to form a new nonprofit entity “to identify and solve common drug development challenges with the end goals of improving the quality of clinical studies and bringing new medicines to patients faster”. The somewhat-awkwardly-named TransCelerate BioPharma immediately got an enthusiastic reception from industry watchers and participants, mainly due to the perception that it was well poised to attack some of the systemic causes of delays and cost overruns that plague clinical trials today.

I myself was caught up in the breathless excitement of the moment, immediately tweeting after reading the initial report:

 Over the past few days, though, I've had time to re-read and think more about the launch announcement, and dial down my enthusiasm considerably.  I still think it’s a worthwhile effort, but it’s probably not fair to expect anything that fundamentally changes much in the way of current trial execution.

Mostly, I’m surprised by the specific goals selected, which seem for the most part either tangential to the real issues in modern drug development or stepping into areas where an all-big-pharma committee isn’t the best tool for the job. I’m also very concerned that a consortium like this would launch without a clearly-articulated vision of how it fits in with, and adds to, the ongoing work of other key players – the press release is loaded with positive, but extremely vague, wording about how TransCelerate will work with, but be different from, groups such as the CTTI and CDISC. The new organization also appears to have no formal relationship with any CRO organizations.  Given the crucial and deeply embedded nature of CROs in today’s research, this is not a detail to be worked out later; it is a vital necessity if any worthwhile progress is to be made.

Regarding the group’s goals, here is what their PR had to say:
Five projects have been selected by the group for funding and development, including: development of a shared user interface for investigator site portals, mutual recognition of study site qualification and training, development of risk-based site monitoring approach and standards, development of clinical data standards, and establishment of a comparator drug supply model.
Let’s take these five projects one by one, to try to get a better picture of TransCelerate’s potential impact:

1. Development of a shared user interface for investigator site portals

Depending on how it’s implemented, the impact of this could range from “mildly useful” to “mildly irksome”. Sure, I hear investigators and coordinators complain frequently about all the different accounts they have to keep track of, so having a single front door to multiple sponsor sites would be a relief. However, I don’t think that the problem of too many usernames cracks anyone’s “top 20 things wrong with clinical trial execution” list – it’s a trivial detail. Aggravating, but trivial.

Worse, if you do it wrong and develop a clunky interface, you’ll get a lot more grumbling about making life harder at the research site. And I think there’s a high risk of that, given that this is in effect software development by committee – and the committee is a bunch of companies that do not actually specialize in software development.

In reality, the best answer to this is probably a lot simpler than we imagine: if we had a neutral, independent body (such as the ACRP) set up a single sign-on (SSO) registry for investigators and coordinators, then all sponsors, CROs, and IVRS/IWRS/CDMS can simply set themselves up as service providers. (This works in the same way that many people today can log into disparate websites using their existing Google or Facebook accounts.)  TransCelerate might do better sponsoring and promoting an external standard than trying to develop an entirely new platform of its own.

2. Mutual recognition of study site qualification and training

This is an excellent step forward. It’s also squarely in the realm of “ideas so obvious we could have done them 10 years ago”. Forcing site personnel to attend multiple iterations of the same training seminars simply to ensure that you’ve collected enough binders full of completion certificates is a sad CYA exercise with no practical benefit to anyone.

This will hopefully re-establish some goodwill with investigators. However, it’s important to note that it’s pretty much a symbolic act in terms of efficiency and cost savings. Nothing wrong with that – heaven knows we need some relationship wins with our increasingly-disillusioned sites – but let’s not go crazy thinking that the represents a real cause of wasted time or money. In fact, it’s pretty clear that one of the reasons we’ve lived with the current site-unfriendly system for so long is that it didn’t really cost us anything to do so.

(It’s also worth pointing out that more than a few biotechs have already figured out, usually with CRO help, how to ensure that site personnel are properly trained and qualified without subjecting them to additional rounds of training.)

3. Development of risk-based site monitoring approach and standards

The consensus belief and hope is that risk-based monitoring is the future of clinical trials. Ever since FDA’s draft guidance on the topic hit the street last year, it’s been front and center at every industry event. It will, unquestionably, lead to cost savings (although some of those savings will hopefully be reinvested into more extensive centralized monitoring).  It will not necessarily shave a significant amount of time off the trials, since in many trials getting monitors out to sites to do SDV is not a rate-limiting factor, but it should still at the very least result in better data at lower cost, and that’s clearly a good thing.

So, the big question for me is: if we’re all moving in this direction already, do we need a new, pharma-only consortium to develop an “approach” to risk-based monitoring?

 First and foremost, this is a senseless conversation to have without the active involvement and leadership of CROs: in many cases, they understand the front-line issues in data verification and management far better than their pharma clients.  The fact that TransCelerate launched without a clear relationship with CROs and database management vendors is a troubling sign that it isn’t poised to make a true contribution to this area.

In a worst-case scenario, TransCelerate may actually delay adoption of risk-based monitoring among its member companies, as they may decide to hold off on implementation until standards have been drafted, circulated, vetted, re-drafted, and (presumably, eventually) approved by all 10 companies. And it will probably turn out that the approaches used will need to vary by patient risk and therapeutic area anyway, making a common, generic approach less than useful.

Finally, the notion that monitoring approaches require some kind of industry-wide “standardization” is extremely debatable. Normally, we work to standardize processes when we run into a lot of practical interoperability issues – that’s why we all have the same electric outlets in our homes, but not necessarily the same AC adaptors for our small devices.  It would be nice if all cell phone manufacturers could agree on a common standard plug, but the total savings from that standard would be small compared to the costs of defining and implementing it.  That’s the same with monitoring: each sponsor and each CRO have a slightly different flavor of monitoring, but the costs of adapting to any one approach for any given trial are really quite small.

Risk-based monitoring is great. If TransCelerate gets some of the credit for its eventual adoption, that’s fine, but I think the adoption is happening anyway, and TransCelerate may not be much help in reality.

4. Development of clinical data standards

This is by far the most baffling inclusion in this list. What happened to CDISC? What is CDISC not doing right that TransCelerate could possibly improve?

In an interview with Matthew Herper at Forbes, TransCelerate’s Interim CEO expands a bit on this point:
“Why do some [companies] record that male is a 0 and female is a 1, and others use 1 and 0, and others use M and F. Where is there any competitive advantage to doing that?” says Neil. “We do 38% of the clinical trials but 70% of the [spending on them]. IF we were to come together and try to define some of these standards it would be an enabler for efficiencies for everyone.”
It’s really worth noting that the first part of that quote has nothing to do with the second part. If I could wave a magic wand and instantly standardize all companies’ gender reporting, I would not have reduced clinical trial expenditures by 0.01%. Even if we extend this to lots of other data elements, we’re still not talking about a significant source of costs or time.

Here’s another way of looking at it: those companies that are conducting the other 62% of trials but are only responsible for 30% of the spending – how did they do it, since they certainly haven’t gotten together to agree on a standard format for gender coding?

But the main problem here is that TransCelerate is encroaching on the work of a respected, popular, and useful initiative – CDISC – without clearly explaining how it will complement and assist that initiative. Neil’s quote almost seems to suggest that he plans on supplanting CDISC altogether.  I don’t think that was the intent, but there’s no rational reason to expect TransCelerate to offer substantive improvement in this area, either.

5. Establishment of a comparator drug supply model

This is an area that I don’t have much direct experience in, so it’s difficult to estimate what impact TransCelerate will have. I can say, anecdotally, that over the past 10 years, exactly zero clinical trials I’ve been involved with have had significant issues with comparator drug supply. But, admittedly, that’s quite possibly a very unrepresentative sample of pharmaceutical clinical trials.

I would certainly be curious to hear some opinions about this project. I assume it’s a somewhat larger problem in Europe than in the US, given both their multiple jurisdictions and their stronger aversion to placebo control. I really can’t imagine that inefficiencies in acquiring comparator drugs (most of which are generic, and so not directly produced by TransCelerate’s members) represent a major opportunity to save time and money.

Conclusion

It’s important to note that everything above is based on very limited information at this point. The transcelerate.com website is still “under construction”, so I am only reacting to the press release and accompanying quotes. However, it is difficult to imagine at this point that TransCelerate’s current agenda will have more than an extremely modest impact on current clinical trials.  At best, it appears that it may identify some areas to cut some costs, though this is mostly through the adoption of risk-based monitoring, which should happen whether TransCelerate exists or not.

I’ll remain a fan of TransCelerate, and will follow its progress with great interest in the hopes that it outperforms my expectations. However, it would do us all well to recognize that TransCelerate probably isn’t going to change things very dramatically -- the many systemic problems that add to the time and cost of clinical trials today will still be with us, and we need to continue to work hard to find better paths forward.

[Update 10-Oct-2012: Wayne Kubick, the CTO of CDISC, has posted a response with some additional details around cooperation between TransCelerate and CDISC around point 4 above.]

Mayday! Mayday! Photo credit: "Wheatley Maypole Dance 2008" from flikr user net_efekt.

Friday, September 21, 2012

Trials in Alzheimer's Disease: The Long Road Ahead

Placebo Control is going purple today in support of Alzheimer’s Action Day.

A couple of clinical trial related thoughts on the ongoing struggle to find even one effective therapy (currently-approved drugs show some ability to slow the progression of AD, but not to effectively stop, much less reverse it):
  • The headlines so far this year have been dominated by the high-profile and incredibly expensive failures of bapineuzumab and solanezumab. However, these two are just the most recent of a long series of failures: a recent industry report tallies 101 investigational drugs that that have failed clinical trials or been suspended in development since 1998, against only 3 successes, an astonishing and painful 34:1 failure rate.

  • While we are big fans of the Alzhemier’s Association (just down the street from Placebo HQ here in Chicago) and the Alzheimer’s Foundation of America, it’s important to stress that the single most important contribution that patients and caregivers can make is to get involved in a clinical trial. That same report lists 93 new treatments currently being evaluated.  As of today, the US clinical trials registry lists 124 open trials for AD.  Many of these studies only require a few hundred participants, so each individual decision to enroll is important and immediately visible.

  • While all research is important, I want to single out the phenomenal work being done by ADNI, the Alzheimer’s Disease Neuroimaging Initiative. This is a public/private partnership that is
    collecting a vast amount of data – blood, cerebrospinal fluid, MRIs, and PET scans – on hundreds of AD patients and matched controls. Best of all, all of the data collected is published in a free, public database hosted by UCLA. Additional funding has recently led to the development of the ADNI-2 study, which will enroll 550 more participants.
Without a doubt, finding and testing effective medications for Alzheimer's Disease is going to take many more years of hard, frustrating work. It will be a path littered with many more failures and therapeutic dead-ends. Today's a good day to stop and recognize that fact, and strengthen our resolve to work together to end this disease.